Publikationer

2023

  • Hallgren, C., Körnich, H., Ivanell, S., Vakkari, V., and Sahlée, E.: The winds are twisting: analysis of strong directional shear across the rotor plane using coastal lidar measurements and ERA5, Wind Energ. Sci. Discuss. [preprint], https://doi.org/10.5194/wes-2023-129, in review, 2023.
  • Zinke, J., Nilsson, E. D., Markuszewski, P., Zieger, P., Mårtensson, E. M., Rutgersson, A., Nilsson, E., and Salter, M. E.: Sea spray emissions from the Baltic Sea: Comparison of aerosol eddy covariance fluxes and chamber-simulated sea spray emissions, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-966, 2023.

2022

  • Gutiérrez-Loza, L., Nilsson, E., Wallin, M. B., Sahlée, E., and Rutgersson, A.: On physical mechanisms enhancing air–sea CO2 exchange, Biogeosciences, 19, 5645–5665, https://doi.org/10.5194/bg-19-5645-2022, 2022.
  • Kutsch, W., Ciais, P., Becker, M., Cantoni, C., Cristofanelli, P., Delmotte, M., Denier van der Gon, H., Droste, A., Gerosa, G., Gkritzalis, T., Gielen, B., Holst, J., Kubistin, D., Luchetta, A., Ramonet, M., Rehder, G., Rutgersson, A., Steinbacher, M., & Super, I. (2022). Are Carbon Sinks at Risk? FLUXES - The European Greenhouse Gas Bulletin, Volume 1, June 2022. ICOS ERIC. https://doi.org/10.18160/8NKQ-65S1
  • Mahrt, L., Nilsson, E., and Rutgersson, A. (2022). The Sea Surface Heat Flux at a Coastal Site. Journal of Physical Oceanography 52, 12, 3297-3307, available from: https://doi.org/10.1175/JPO-D-22-0094.1 [Accessed 14 December 2022]
  • Hallgren, C., Arnqvist, J., Nilsson, E., Ivanell, S., Shapkalijevski, M., Thomasson, A., Pettersson, H., and Sahlée, E.: Classification and properties of non-idealized coastal wind profiles – an observational study, Wind Energ. Sci., 7, 1183–1207, https://doi.org/10.5194/wes-7-1183-2022, 2022.

2021

  • Mahrt, L., Nilsson, E., Rutgersson, A., & Pettersson, H. (2021). Vertical Divergence of the Atmospheric Momentum Flux near the Sea Surface at a Coastal Site, Journal of Physical Oceanography, 51(11), 3529-3537, https://journals.ametsoc.org/view/journals/phoc/51/11/JPO-D-21-0081.1.xml
  • Müller, J. D., Schneider, B., Gräwe, U., Fietzek, P., Wallin, M. B., Rutgersson, A., Wasmund, N., Krüger, S., and Rehder, G.: Cyanobacteria net community production in the Baltic Sea as inferred from profiling pCO2 measurements, Biogeosciences, 18, 4889–4917, https://doi.org/10.5194/bg-18-4889-2021, 2021.
  • Osterwalder, S., Nerentorp, M., Zhu, W., Jiskra, M., Nilsson, E., Nilsson, M. B., et al. (2021). Critical observations of gaseous elemental mercury air-sea exchange. Global Biogeochemical Cycles, 35, e2020GB006742. https://doi.org/10.1029/2020GB006742
  • Gutiérrez-Loza, L., Wallin, M.B., Sahlée, E., Holding, T., Shutler, J.D., Rehder, G., Rutgersson, A., (2021): Air–sea CO2 exchange in the Baltic Sea—A sensitivity analysis of the gas transfer velocity, Journal of Marine Systems, Vol. 222,103603, https://doi.org/10.1016/j.jmarsys.2021.103603.
  • Zhang, S.; Rutgersson, A.; Philipson, P.; Wallin, M.B. Remote Sensing Supported Sea Surface pCO2 Estimation and Variable Analysis in the Baltic Sea. Remote Sens. 2021, 13, 259. https://doi.org/10.3390/rs13020259
  • H. Li, B. Claremar, L. Wu, C. Hallgren, H. Körnich, S. Ivanell, E. Sahlée, A sensitivity study of the WRF model in offshore wind modeling over the Baltic Sea, Geoscience Frontiers (2021), https://doi.org/10.1016/j.gsf.2021.101229
  • Qiao, W., Wu, L., Song, J., Li, X., Qiao, F., & Rutgersson, A. (2021). Momentum flux balance at the air-sea interface. Journal of Geophysical Research: Oceans, 126, e2020JC016563. https://doi.org/10.1029/2020JC016563
  • Van Dam, B., Polsenaere, P., Barreras-Apodaca, A., Lopes, C., Sanchez-Mejia, Z., Tokoro, T., et al. (2021). Global trends in air-water CO2 exchange over seagrass meadows revealed by atmospheric Eddy Covariance. Global Biogeochemical Cycles, 35, e2020GB006848. https://doi.org/10.1029/2020GB006848

2020

  • Rutgersson A., Pettersson H., Nilsson E., Bergström H., Wallin M.B., Nilsson E.D., Sahlée E., Wu L., Mårtensson E.M., (2020): Using land-based stations for air–sea interaction studies, Tellus A: Dynamic Meteorology and Oceanography, 72:1, 1-23, DOI: 10.1080/16000870.2019.1697601
  • Vieira, V.M., Mateus, M., Canelas, R., Leitão, F., (2020): The FuGas 2.5 Updated for the Effects of Surface Turbulence on the Transfer Velocity of Gases at the Atmosphere–Ocean Interface. J. Mar. Sci. Eng. 2020, 8, 435.
  • Ramon, J., Pérez-Zanón, N., Soret, A., Doblas-Reyes, F. J., The Tall Tower Dataset: a unique initiative to boost wind energy research, Earth Syst. Sci. Data, 12, 429–439, 2020, https://doi.org/10.5194/essd-12-429-2020
  • Mahrt, L., Nilsson, E., Rutgersson, A., Pettersson H., (2020): Sea-Surface Stress Driven by Small-Scale Non-stationary Winds. Boundary-Layer Meteorol 176, 13–33. https://doi.org/10.1007/s10546-020-00518-9
  • Hallgren C, Arnqvist J, Ivanell S, Körnich H, Vakkari V, Sahlée E. Looking for an Offshore Low-Level Jet Champion among Recent Reanalyses: A Tight Race over the Baltic Sea. Energies. 2020; 13(14):3670. https://doi.org/10.3390/en13143670

2019

  • Svensson, N., Arnqvist, J., Bergström, H., Rutgersson, A., Sahlée, E. (2019): Measurements and Modelling of Offshore Wind Profiles in a Semi-Enclosed Sea, Atmosphere, 10(4), 194; https://doi.org/10.3390/atmos10040194
  • Svensson, N, Bergström, H, Rutgersson, A, Sahlée, E. Modification of the Baltic Sea wind field by land-sea interaction. Wind Energy. 2019; 22: 764– 779. https://doi.org/10.1002/we.2320
  • Steinhoff T, Gkritzalis T, Lauvset SK, Jones S, Schuster U, Olsen A, Becker M, Bozzano R, Brunetti F, Cantoni C, Cardin V, Diverrès D, Fiedler B, Fransson A, Giani M, Hartman S, Hoppema M, Jeansson E, Johannessen T, Kitidis V, Körtzinger A, Landa C, Lefèvre N, Luchetta A, Naudts L, Nightingale PD, Omar AM, Pensieri S, Pfeil B, Castaño-Primo R, Rehder G, Rutgersson A, Sanders R, Schewe I, Siena G, Skjelvan I, Soltwedel T, van Heuven S and Watson A (2019) Constraining the Oceanic Uptake and Fluxes of Greenhouse Gases by Building an Ocean Network of Certified Stations: The Ocean Component of the Integrated Carbon Observation System, ICOS-Oceans. Front. Mar. Sci. 6:544. doi: 10.3389/fmars.2019.00544
  • Holding et al., (2019): The FluxEngine air-sea gas flux toolbox: simplified interface and extensions for in situ analyses and multiple sparingly soluble gases, Ocean Sci., 15, 1707–1728, https://doi.org/10.5194/os-15-1707-2019
  • Gutiérrez-Loza L., Wallin M.B., Sahlée E., Nilsson E., Bange H.W., Kock A., Rutgersson A., (2019): Measurement of Air-Sea Methane Fluxes in the Baltic Sea Using the Eddy Covariance Method, Frontiers in Earth Science, 7, 93, https://www.frontiersin.org/article/10.3389/feart.2019.00093     doi:10.3389/feart.2019.00093   
  • Nilsson, E., Rutgersson, A., Dingwell, A., Björkqvist, J.-V., Pettersson, H., Axell, L., Nyberg, J., Strömstedt, E., (2019): Characterization of Wave Energy Potential for the Baltic Sea with Focus on the Swedish Exclusive Economic Zone. Energies, 12, 793.

2018

  • Nilsson, E., H. Bergström, A. Rutgersson, E. Podgrajsek, M.B. Wallin, G. Bergström, E. Dellwik, S. Landwehr, and B. Ward, (2018): Evaluating Humidity and Sea Salt Disturbances on CO2 Flux Measurements. J. Atmos. Oceanic Technol., 35, 859–875, https://doi.org/10.1175/JTECH-D-17-0072.1

2017

  • Parard, G. A. Rutgersson, S. R. Parampil, and A. A. Charantonis (2017) Earth Syst. Dynam., 8, 1093–1106, (2017), https://doi.org/10.5194/esd-8-1093-2017
  • Lansø, A.S., Sørensen, L.L., Christensen, J.H., Rutgersson, A. and Geels, C., 2017. The influence of short-term variability in surface water pCO2 on modelled air–sea CO2 exchange. Tellus B: Chemical and Physical Meteorology, 69(1), p.1302670. DOI: http://doi.org/10.1080/16000889.2017.1302670
  • Wu, L., D. Sproson, E. Sahlée, and A. Rutgersson, (2017): Surface Wave Impact When Simulating Midlatitude Storm Development. J. Atmos. Oceanic Technol., 34, 233–248, https://doi.org/10.1175/JTECH-D-16-0070.1

2016

  • Andersson A., Rutgersson A., Sahlée E. (2016): Using eddy covariance to estimate air-sea gas transfer velocity for oxygen. Journal of Marine Systems, 159:67-75, DOI:10.1016/j.jmarsys.2016.02.008
  • Parard G., Charantonis A., Rutgersson A. (2016): Using satellite data to estimate partial pressure of CO2 in the Baltic Sea. Journal of Geophysical Research - Biogeoscience, 121:1002-1015, DOI:10.1002/2015JG003064
  • Svensson N., Bergström H., Sahlée E., and Rutgersson A. (2016): Stable atmospheric conditions over the Baltic Sea: model evaluation and climatology. Boreal Environmental Research, 21:387-404.
  • Wu L., Rutgersson A., Sahlée E., and Larsén X.G. (2016): Swell impact on wind stress and atmospheric mixing in a regional coupled atmosphere-wave model. Journal of Geophysical Research - Oceans, 121:4633-4648, DOI:10.1002/2015JC011576

2015

  • Lansø A.S., Bendtsen J., Christensen J.H., Sørensen L.L., Chen H., Meijer H.A.J. and Geels C. (2015): Sensitivity of the air–sea CO2 exchange in the Baltic Sea and Danish inner waters to atmospheric short-term variability, Biogeosciences, 12, 2753–2772, doi:10.5194/bg-12-2753-2015
  • Hahmann A.N., Vincent C.L., Peña A., Lange J., and Hasager C.B. (2015): Wind climate estimation using WRF model output: method and model sensitivities over the sea. International Journal of Climatology, 35:3422-3439, DOI:10.1002/joc.4217
  • Högström U., Sahlée E., Smedman A.-S., Rutgersson A., Nilsson E., Kahma K.K., and Drennan W.M. (2015): Surface stress over the ocean in swell-dominated conditions during moderate winds. Journal of the Atmospheric Sciences, 72:4777-4795, DOI:10.1175/JAS-D-15-0139.1, PDF [1.6MB]
  • Parard G., Charantonis A., Rutgersson A. (2015): Remote sensing the sea surface CO2 of the Baltic Sea using the SOMLO methodology. Biogeosciences, 12:3369-3384, DOI:10.5194/bg-12-3369-2015, PDF [5.4MB]
  • Song J., Fan W., Li S., and Zhou M. (2015): Impact of surface waves on the steady near-surface wind profiles over the ocean. Boundary-Layer Meteorology, 155:111-127, DOI:10.1007/s10546-014-9983-6
  • Vieira V.M.N.C.S., Sahlée E., Jurus P., Clementi E., Pettersson H., and Mateus M. (2015): Improving estimations of greenhouse gas transfer velocities by atmosphere-ocean couplers in Earth-system and regional models. Biogeosciences Discussions, 12:15901-15924, DOI:10.5194/bgd-12-15901-2015, PDF [1.6MB]
  • Vincent C.L. and Hahmann A.N. (2015): The impact of grid and spectral nudging on the variance of the near-surface wind speed. Journal of Applied Meteorology and Climatology, 54:1021-1038, DOI:10.1175/JAMC-D-14-0047.1, PDF [4.2MB]
  • Wu L., Rutgersson A., Sahlée E., Larsén X.G. (2015): The impact of waves and sea spray on modelling storm track and development. Tellus A 67:27967, DOI:10.3402/tellusa.v67.27967, PDF [8.6MB]

2014

  • Andersson A., Rutgersson A., and Sahlée E. (2014): Using a high-frequency fluorescent oxygen probe in atmospheric eddy covariance applications. Journal of Atmospheric and Oceanic Technology, 31:2498-2511, DOI:10.1175/JTECH-D-13-00249.1, PDF [1.2MB]
  • Nilsson E.O., Sahlée E., and Rutgersson A. (2014): Turbulent momentum flux characterisation using extended multiresolution analysis. Quarterly Journal of the Royal Meteorological Society, 140:1715-1728, DOI:10.1002/qj.2252

2013

  • Högström U., Rutgersson A., Sahlée E., Smedman A.-S., Hristov T.S., Drennan W.M., and Kahma K.K. (2013): Air-sea interaction features in the Baltic Sea and at a pacific trade-wind site: An inter-comparison study. Boundary-Layer Meteorology, 147:139-163, DOI:10.1007/s10546-012-9776-8
  • Norman M., Parampil S.R., Rutgersson A., and Sahlée E. (2013): Influence of coastal upwelling on the air-sea gas exchange of CO2 in a Baltic Sea basin. Tellus B, 65:21831, DOI:10.3402/tellusb.v65i0.21831, PDF [2.9MB]

2012

  • Belcher S.E., Grant A.L.M., Hanley K.E., et al. (2012): A global perspective on Langmuir turbulence in the ocean surface boundary layer, Geophysical Research Letters, 39:L18605, DOI:10.1029/2012GL052932, PDF [2MB]
  • Nilsson E.O., Rutgersson A., Smedman A.-S., and Sullivan P.P. (2012): Convective boundary-layer structure in the presence of wind-following swell. Quarterly Journal of the Royal Meteorological Society, 138:1476-1489, DOI:10.1002/qj.1898
  • Norman M., Rutgersson A., Sørensen L.L., and Sahlée E. (2012): Methods for estimating air-sea fluxes of CO2 using high-frequency measurements. Boundary-Layer Meteorology, 144:379-400, DOI:10.1007/s10546-012-9730-9

2011

  • Rutgersson A., Smedman A.-S., and Sahlée E. (2011): Oceanic convective mixing and the impact on air-sea gas transfer velocity. Geophysical Research Letters, 38:L02602, DOI:10.1029/2010GL045581, PDF [0.2MB]
  • Wesslander K., Hall P., Hjalmarsson S., Lefevere D., Omstedt A., Rutgersson A., Sahlée E., and Tengberg A. (2011): Observed carbon dioxide and oxygen dynamics in a Baltic Sea coastal region. Journal of Marine Systems, 86:1-9, DOI:10.1016/j.jmarsys.2011.01.001

2010

  • Carlsson B., Papadimitrakis Y., and Rutgersson A. (2010): Evaluation of a roughness length model and sea surface properties in the Baltic Sea. Journal of Physical Oceanography, 40:2007-2024, DOI:10.1175/2010JPO4340.1, PDF [1.4MB]
  • Rutgersson A. and Smedman A.-S. (2010): Enhanced air-sea CO2 transfer due to water-side convection. Journal of Marine Systems, 80:125-134, DOI:10.1016/j.jmarsys.2009.11.004
  • Rutgerson A., Sætra Ø., Semedo A., Carlsson B., and Kumar R. (2010): Impact of surface waves in a Regional Climate Model. Meteorologische Zeitschrift, 19:247-257, DOI:10.1127/0941-2948/2010/0456
  • Sušelj, K., Sood, A. (2010): Improving the Mellor–Yamada–Janjić Parameterization for wind conditions in the marine planetary boundary layer. Boundary-Layer Meteorol 136, 301–324. https://doi.org/10.1007/s10546-010-9502-3

2009

  • Carlsson B., Rutgersson A., and Smedman A.-S. (2009): Impact of swell on a regional atmospheric climate model. Tellus, 61:527-538, DOI:10.1111/j.1600-0870.2009.00403.x
  • Carlsson B., Rutgersson A., and Smedman A.-S. (2009): Investigating the effect of a wave-dependent momentum flux in a process oriented ocean model. Boreal Environment Research, 14:3-17, PDF [1MB]
  • Högström U., Smedman A., Sahlée E., Drennan W.M., Kahama K.K., Pettersson H., and Zhang F. (2009): The atmospheric boundary layer during swell - a field study and interpretation of the turbulent kinetic energy budget for high wave ages. Journal of the Atmospheric Sciences, 66:2764-2779, DOI:10.1175/2099JAS2973.1, PDF [1MB]
  • Rutgersson A., Norman M., and Åström G. (2009): Atmospheric CO2 variation over the Baltic Sea and the impact on air-sea exchange. Boreal Environment Research, 14:238-249, PDF [1MB]
  • Semedo A., Sætra Ø., Rutgersson A., Kahma K.K., and Pettersson H. (2009): Wave induced wind in the marine boundary layer. Journal of the Atmospheric Sciences, 66:2256-2271, DOI:10.1175/2009JAS3018.1, PDF [1.4MB]
  • Smedman A.-S., Högström U., Sahlée E., Drennan W.M., Kahama K.K., Pettersson H., and Zhang F. (2009): Observational study of marine atmospheric boundary layer characteristics during swell. Journal of the Atmospheric Sciences, 66:2747-2763, DOI:10.1175/2009JAS2952.1, PDF [1MB]

2008

  • Högström U., Sahlée E., Drennan W.M., et al. (2008): Momentum fluxes and wind gradients in the marine boundary layer - a multi platform study. Boreal Environment Research, 13:475-502, PDF [4MB]
  • Rutgersson A., Norman M., Schneider B., Pettersson H., and Sahlée E. (2008): The annual cycle of carbon-dioxide and parameters influencing the air-sea carbon exchange in the Baltic Proper. Journal of Marine Systems, 74:381-394, DOI:10.1016/j.jmarsys.2008.02.005
  • Sahlée E., Smedman A.-S., Högström U., and Rutgersson A. (2008): Reevaluation of the bulk exchange coefficient for humidity at sea during unstable and neutral conditions. Journal of Physical Oceanography, 38:257-272, DOI:10.1175/2007JPO3754.1, PDF [1MB]
  • Sahlée E., Smedman A.-S., Rutgersson A., and Högström U. (2008): Spectra of CO2 and humidity in the marine atmospheric surface layer. Boundary-Layer Meteorology, 126:279-295, DOI:10.1007/s10546-007-9230-5

2007

  • Rutgersson A., Carlsson B., and Smedman A.-S. (2007): Modelling sensible and latent heat fluxes over sea during unstable, very close to neutral conditions. Boundary-Layer Meteorology, 123:395-415, DOI:10.1007/s10546-006-9150-9
  • Smedman A.-S., Högström U., Sahlée E., and Johansson C. (2007): Critical re-evaluation of the bulk transfer coefficient for sensible heat over the ocean during unstable and neutral conditions Quarterly Journal of the Royal Meteorological Society, 133:227-250, DOI:10.1002/qj.6, PDF [0.6MB]
  • Smedman A.-S., Högström U., Hunt J.C.R., and Sahlée E. (2007): Heat/mass transfer in the slightly unstable atmospheric surface layer. Quarterly Journal of the Royal Meteorological Society, 133:37-51, DOI:10.1002/qj.7, PDF [0.4MB]

2006

  • Högström U., Smedman A.-S., and Bergström H. (2006): Calculation of wind speed variation with height over the sea. Wind Engineering, 30:269-286, DOI:10.1260/030952406779295480
  • Smedman A.-S., Bumke K., Högström U., et al. (2006): Precipitation and evaporation budgets over the Baltic Proper: Observations and modelling. Journal of Atmospheric and Ocean Science, 10:163-191, DOI:10.1080/17417530500513756

2005

  • Johansson C., Hennemuth B., Bösenberg B., Linné H., and Smedman A.-S. (2005): Double-layer structure over the Baltic Sea. Boundary-Layer Meteorology, 114:389-412, DOI:10.1007/s10546-004-1671-5
  • Rutgersson A., Omstedt A., and Chen Y. (2005): Evaluation of the heat balance components over the Baltic Sea using four gridded meteorological databases and direct observations. Nordic Hydrology, 36:381-396

2004

  • Guo Larsén X., Smedman A.-S., and Högström U. (2004): Air-sea exchange of sensible heat over the Baltic Sea. Quarterly Journal of the Royal Meteorological Society, 130:1-25, DOI:10.1256/qj.03.11, PDF [0.8MB]
  • Högström U. and Smedman A.-S. (2004): Accuracy of sonic anemometers: Laminar wind-tunnel calibrations compared to atmospheric in situ calibrations against a reference instrument. Boundary-Layer Meteorology, 111:33-54, DOI:10.1023/B:BOUN.0000011000.05248.47
  • Sjöblom A. and Smedman A.-S. (2004): Comparison between eddy-correlation and inertial dissipation methods in the marine atmospheric boundary layer. Boundary-Layer Meteorology, 110:141-164, DOI:10.1023/A:1026006402060
  • Smedman A.-S., Hunt J.C.R., and Högström U. (2004): Effects of shear sheltering in a slightly stable atmospheric boundary layer with strong shear. Quarterly Journal of the Royal Meteorological Society, 130:31-50, DOI:10.1256/qj.03.68, PDF [0.6MB]

2003

  • Guo Larsén X., Makin V., and Smedman A.-S. (2003): Comparison of modelled and measured shearing stress over the Baltic Sea. Global Atmos. Ocean System, 9(3)
  • Hennemuth B., Rutgersson A., Bumke K., Clemens M., Omstedt A., Jacob D., and Smedman A.-S. (2003): Net precipitation over the Baltic Sea for one year using several methods. Tellus, 55:352-367, DOI:10.1034/j.1600-0870.2003.00020.x
  • Mahrt L., Vickers D., Fredrickson P., Davidson K, and Smedman A.-S. (2003): Sea-surface aerodynamic roughness. Journal of Geophysical Research: Oceans, 108:3171, DOI:10.1029/2002JC001383, PDF [0.2MB]
  • Sjöblom A. and Smedman A.-S. (2003): Vertical structure in the marine atmospheric boundary layer and its implication for the inertial dissipation method. Boundary-Layer Meteorology, 109:1-25, DOI:10.1023/A:1025407109324
  • Smedman A.-S., Högström U., and Sjöblom A. (2003): A note on velocity spectra in the marine boundary layer. Boundary-Layer Meteorology, 109:27-48, DOI:10.1023/A:1025428024311
  • Smedman A.-S., Guo Larsén X., Högström U., Kahma K.K., and Pettersson H. (2003): The effect of sea state on the monmentum exchange over the sea during neutral conditions. Journal of Geophysical Research, 108:3367, DOI:10.1029/2002JC001526, PDF [0.2MB]
  • Smedman A.-S., Högström U., Bergström H., Johansson C., Sjöblom A., and Guo Larsén X. (2003): New findings concerning the structure of the marine atmospheric boundary layer over the Baltic Sea - possible implications for wind energy installations. Journal of Wind Engineering, 27:431-447, DOI:10.1260/030952403773617427

2002

  • Högström U., Hunt J.C.R., and Smedman A.-S. (2002): Theory and measurements for turbulence spectra and variances in the near neutral surface layer. Boundary-Layer Meteorology, 103:101-124, DOI:10.1023/A:1014579828712
  • Sjöblom A. and Smedman A.-S. (2002): The turbulent kinetic budget over the sea. Journal of Geophysical Research: Oceans, 107:3142, DOI:10.1029/2001JC001016, PDF [0.5MB]

2001

  • Johansson C., Smedman A.-S., Högström U., Brasseur J.G., and Khanna S. (2001): Critical test of the validity of Monin-Obukhov similarity during convective conditions. Journal of the Atmospheric Sciences, 58:1549-1566, DOI:10.1175/1520-0469(2001)058<1549:CTOTVO>2.0.CO;2, PDF [0.3MB]
  • Johansson C., Smedman A.-S., Högström U., and Brasseur J.G. (2001): Reply. Journal of the Atmospheric Sciences, 59:2608-2614, DOI:10.1175/1520-0469(2002)059<2608:R>2.0.CO;2, PDF [0.2MB]
  • Rutgersson A., Smedman A.-S., and Omstedt A. (2001): Measured and simulated sensible and latent heat fluxes at two marine sites in the Baltic Sea. Boundary-Layer Meteorology, 99:53-84, DOI:10.1023/A:1018799227854
  • Rutgersson A., Smedman A.-S., and Högström U. (2001): Use of conventional stability parameters during swell. Journal of Geophysical Research: Oceans, 106:27117-27134, DOI:10.1029/2000JC000543, PDF [1.8MB]
  • Rutgersson A., Bumke K., Clemens M., Foltescu V., Lindau R., Michelson D., and Omstedt A. (2001): Precipitation estimates over the Baltic Sea: Present state of the art. Nordic Hydrology, 32:285-314, DOI:10.2166/nh.2001.017

2000

  • Källstrand B., Bergström H., Højstrup J., and Smedman A.-S. (2000): Meso-scale wind field modifications over the Baltic Sea. Boundary-Layer Meteorology, 95:161-188, DOI:10.1023/A:1002619611328
  • Rutgersson A. (2000): A comparison between long term measured and modeled sensible heat and momentum flux using a High Resolution Limited Area Model (HIRLAM). Meteorologische Zeitschrift, 9:29-37

1999

  • Bergström H. and Smedman A.-S. (1999): Wind climatology at a well-exposed site in the Baltic Sea. Journal of Wind Engineering, 23:133-142
  • Högström U., Smedman A.-S., and Bergström H. (1999): A case study of two-dimensional stratified turbulence. Journal of the Atmospheric Science, 56:959-976, DOI:10.1175/1520-0469(1999)056<0959:ACSOTD>2.0.CO;2, PDF [0.2MB]
  • Smedman A.-S., Högström U., Bergström H., Rutgersson A., Kahma K.K., and Pettersson H. (1999): A case-study of air-sea interaction during swell conditions. Journal of Geophysical Research:Oceans, 104:25833-25851, DOI:10.1029/1999JC900213, PDF [1.8MB]

1997

  • Källstrand B. and Smedman A.-S. (1997): A case study of the near-neutral coastal internal boundary-layer growth: Aircraft measurements compared with different model estimates. Boundary-Layer Meteorology, 85:1-33, DOI:10.1023/A:1000475315106
  • Smedman A.-S., Högström U., and Bergström H. (1997): The turbulence regime of a very stable marine airflow with quasi-frictional decoupling. Journal of Geophysical Research: Oceans, 102:21049-21059, DOI:10.1029/97JC01070, PDF [1MB]

1996

  • Smedman A.-S., Bergström H., and Grisogono B. (1996): Evolution of stable internal boundary layers over a cold sea. Journal of Geophysical Research: Oceans, 102:1091-1099, DOI:10.1029/96/JC02782, PDF [0.9MB]
  • Smedman A.-S., Högström U., and Bergström H. (1996): Low-level jets - a decisive factor for off-shore wind energy siting in the Baltic Sea. Wind Engineering, 20:137-147
Senast uppdaterad: 2024-01-18